Week of May $25^{\text {th }}$ Math 9B Continuation of Learning Plan

Essential Outcome	Lesson/Video	Practice Questions
Construct a linear equation given a table of values	Method 1: https://www.youtube.com/watch? $\mathrm{v}=9$ wixvKtebbE Method 2: (Slope-Intercept Form) https://www.youtube.com/watch? $\mathrm{v}=009 \mathrm{bdHA5ZBA}$	Worksheet \#1: Constructing a Linear Equation from a Table of Values
Construct linear equations from context. Identify a pattern in a problem and use it to interpolate and extrapolate data.	Notes to Accompany Video 1 are below in this document. Video 1:https://youtu.be/7JU8nbqtt9A Video 2: https://youtu.be/hBpl91fmMKg	Worksheet \#2: Word Problems

Worksheet \# 1: Constructing a Linear Equation from a Table of Values
Write the equation represented by each table of values.
1.

\mathbf{x}	\mathbf{y}
-2	2
-1	3
0	4
1	5
2	6

2.

\mathbf{x}	\mathbf{y}
-5	6
-4	4
-3	2
-2	0
-1	-2

3.

\mathbf{x}	\mathbf{y}
-6	-6
-5	-3
-4	0
-3	3
-2	6

4.

\mathbf{x}	\mathbf{y}
0	8
1	6
2	4
3	2
4	0

5.

\mathbf{x}	\mathbf{y}
0	8
2	6
4	4
6	2
8	0

6.

\mathbf{x}	\mathbf{y}
0	0
1	-4
2	-8
3	-12
4	-16

Answers:

1. $y=x+4$
2. $y=-2 x-4$
3. $y=3 x+12$
4. $y=-2 x+8$
5. $y=-x+8$
6. $y=-4 x$

Notes: How to construct linear equations from context, identify a pattern in a problem, and extrapolate data.

Example to Accompany Instructional Video:

Apolline is mowing lawns for a summer job. For every mowing job, she charges an initial fee of $\$ 7$ plus a constant fee for each hour of work. Her fee for a 5 -hour job, for instance, is $\$ 42$. Her fee for a 3 -hour job is $\$ 28$.

Let y represent Apolline's fee (in dollars) for a single job that took X hours for her to complete.
A. Complete the equation for the relationship between the fee and number of hours worked using the steps below.

- Create a table of values

x (hours)	y (fee)
3	$\$ 28$
5	$\$ 42$

- Find slope $\left(\frac{\text { Change in } y}{\text { Change in } x}\right)$
$+2$

$$
\begin{gathered}
\text { slope }(m)=\left(\frac{\text { Change in } y}{\text { Change in } x}\right) \\
\text { slope }(m)=\left(\frac{14}{2}\right) \\
\text { slope }(m)=7
\end{gathered}
$$

- Find y-intercept (What is the value of y when $x=0$ on the table)

x (hours)	y (fee)
0	$\$ 7$ initial fee
3	$\$ 28$
5	$\$ 42$

$$
\begin{aligned}
& \text { OR, you can substitute any known point and the slope into } \\
& \text { the slope-intercept equation and solve for } \mathrm{b} \text { to find the } \\
& \text { intercept. I chose the point }(3,28) \\
& \begin{array}{l}
y=m x+b \\
28=7(3)+b \text { (substitute } \mathrm{y}=28, \mathrm{~m}=7 \text {, and } \mathrm{x}=3 \text {) } \\
28=21+b \\
28-21=21-21+b \\
7=b
\end{array}
\end{aligned}
$$

- Plug in the values for slope and the y-intercept into slope-intercept form of an equation. $(y=m x+b$, where $\mathrm{m}=$ slope and $\mathrm{b}=\mathrm{y}$-intercept)

$$
\begin{aligned}
& y=m x+b \\
& y=7 x+7
\end{aligned}
$$

B. How many hours would she have worked if she made $\$ 63$?

$$
\begin{array}{ll}
y=7 x+7 & \begin{array}{l}
\text { Substitute } \mathrm{y}=63 \text { into the } \\
\text { equation and solve for } \mathrm{x}
\end{array} \\
63=7 x+7 & \\
63-7=7 x+7-7 \\
56=7 x \\
\frac{56}{7}=\frac{7 x}{7} & \begin{array}{l}
\text { She would have worked } 8 \\
\text { hours if she made } \$ 63 .
\end{array} \\
8=x &
\end{array}
$$

C. How much money would she make for working 6 hours?

$$
\begin{aligned}
& y=7 x+7 \\
& y=7(6)+7 \quad \begin{array}{l}
\text { Substitute } \mathrm{x}=6 \text { into the } \\
\text { equation and solve for } \mathrm{y}
\end{array} \\
& y=42+7 \\
& y=49
\end{aligned}
$$

She would make \$49 if she worked 6 hours.

Problem \#1:

A lake near the Arctic Circle is covered by a 2 -meter-thick sheet of ice during the cold winter months. When spring arrives, the warm air gradually melts the ice, causing its thickness to decrease at a constant rate. After 3 weeks, the sheet is only 1.25 meters thick.

Let y represent the ice sheet's thickness (in meters) after X weeks.
A. Complete the equation for the relationship between the thickness and number of weeks using the steps below.

- Create a table of values
- Find slope $\left(\frac{\text { Change in } y}{\text { Change in } x}\right)$
- Find y-intercept (What is the value of y when $x=0$ on the table)
- Plug in the values for slope and the y-intercept into slope-intercept form of an equation. $(y=m x+b$, where $m=$ slope and $b=y$-intercept)
B. How much ice will be left after 6 weeks?
C. How long will it take for the ice to disappear?

Problem \#2:

Mr. Mole left his burrow that lies 7 meters below the ground and started digging his way deeper into the ground, descending at a constant rate. After 6 minutes, he was 16 meters below the ground.

Let y represent Mr. Mole's altitude (in meters) relative to the ground after x minutes.
A. Complete the equation for the relationship between the altitude and number of minutes using the steps below.

- Create a table of values
- Find slope($\left.\frac{\text { Change in } y}{\text { Change in } x}\right)$
- Find y-intercept (What is the value of y when $x=0$ on the table)
- Plug in the values for slope and the y-intercept into slope-intercept form of an equation. $(y=m x+b$, where $m=$ slope and $b=y$-intercept)
B. How long will it take Mr. Mole to dig 20 meters $(y=-20)$?
C. What would Mr. Mole's altitude be after 12 minutes of digging?

Problem \#3:

A young sumo wrestler decided to go on a special high-protein diet to gain weight rapidly. He started at 90 kilograms and gained weight at a constant rate. After 8 months, he weighed 138 kilograms.

Let y represent the sumo wrestler's weight (in kilograms) after x months.
A. Complete the equation for the relationship between the weight and number of months using the steps below.

- Create a table of values
- Find slope ($\left.\frac{\text { Change in } y}{\text { Change in } x}\right)$
- Find y-intercept (What is the value of y when $x=0$ on the table)
- Plug in the values for slope and the y-intercept into slope-intercept form of an equation. $(y=m x+b$, where $m=$ slope and $b=y$-intercept)
B. How much did he weigh 4 months into his high protein diet?
C. How many months will it take him to reach 150 kg ?

Problem \#4:

Kayden is a stunt driver. One time, during a gig where she escaped from a building about to explode, she drove at a constant speed to get to the safe zone that was 160 meters away. After 3 seconds of driving, she was 85 meters away from the safe zone.

Let y represent the distance (in meters) from the safe zone after x seconds.
A. Complete the equation for the relationship between the distance and number of seconds using the steps below.

- Create a table of values
- Find slope (Change in $\begin{aligned} & \text { Change in } x \\ &)\end{aligned}$
- Find y-intercept (What is the value of y when $x=0$ on the table)
- Plug in the values for slope and the y-intercept into slope-intercept form of an equation. $(y=m x+b$, where $m=$ slope and $b=y$-intercept)
B. How long did it take her to reach the safe zone?
C. How far past the safe zone would she be after 9 seconds of driving?

Problem \#5: (More challenging)

Noa drove from the Dead Sea up to Jerusalem, and her altitude increased at a constant rate of 740 meters per hour. When she arrived in Jerusalem after 1.5 hours of driving, her altitude was 710 meters above sea level.

Let y represent Noa's altitude (in meters) relative to sea level after x hours.
A. Complete the equation for the relationship between the altitude and number of hours using the steps below.

- Create a table of values [hint: Use the rate of her increase in altitude (the slope) to add more values to your table besides the one given]
- Extrapolate to find the y-intercept (What is the value of y when $x=0$ on the table). In other words, what was her altitude when she began driving?
- Plug in the values for slope and the y-intercept into slope-intercept form of an equation. ($y=m x+b$, where $m=$ slope and $b=y$-intercept)

Worksheet \#2: Answers

Problem \#1:	Problem \#2:	Problem \#3:	Problem \#4:	Problem \#5:
A. $y=-0.25 x+2$	A. $y=-\frac{3}{2} x-7$	A. $y=6 x+90$	A. $y=-25 x+160$	A. $y=740 x-400$
B. 0.5 m	B. 8.7 minutes	B. 114 kg	B. 6.4 s	
C. 8 weeks	C. $-25 \mathrm{~m}(25 \mathrm{~m}$	C. 10 months	C. 65 meters past the safe zone (or $-65 \mathrm{~m})$	
	underground)			

